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In 1859, almost twenty-five years pnor to the publication of
Weierstrauss's approximation theorem, the classical theory of the
Chebyshev polynomials cos{n cos 1 x) arose, as we know, from the
problem of best uniform approximation to x" on [ -I, I] by polynomials
of degree < n. In this connection Chebyshev showed that x" can be
approximated on [ -I, I] by polynomials of degree at most n - I with an
error exactly 2 ,,+ I. From his construction, it follows that the best
uniformly approximating polynomial of degree at most (n - I) to x" on
[ -I, I] is P{x) = x" - 2 -" + 1T,,{x). Here T" is the Chebyshev polynomial
of the nth dcgree and P{x) is (if n ~ 2) a polynomial of degree n - 2, since
for n even, all odd coefficients of T,,{x) vanish (but no even) for odd n, the
converse holds. As is clear from his proof, x" cannot be uniformly
approximated with error < 2 by polynomials of degree at most n - I on
any interval whose length is ~ 4. In 1868, Chebyshev's student Zolotarev
extended the above result of Chebyshev as follows. The error obtained in
the best uniform approximation of x" - (JX,,-l {O:( (J:( n tan 2 (n/2n)) on
[ -I, I] by polynomials of degree at most n - 2 (~O) is 2 -II + 1

{I + {(J/n))". For (J=O and n~2 we obtain the above stated result of
Chebyshev. All real values of (J were handled, using elliptic functions. The
polynomials developed by Zolotarev for this purpose played a very
significant role in the important investigations of W. A. Markov and N. I.
Achieser. Erdos and Szego [7J proved Zolotarev's result by a different
method. In 1976, on my suggestion, Newman [II J has obtained error
estimates for the best uniform approximation of x" on [ -I, I] by rational
functions of the form P/Q where P is a polynomial of degree n - 2 and Q is
a polynomial of even degree. In [15J, Newman and Reddy have initiated
the approximation of x n on [0, I J by reciprocals of polynomials of degree
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11 and obtained error estimates. Later on, Newman [12 J, Reddy [18 J, and
Borwein [4 J have obtained by different methods better error estimates
than those of [IS]. In [17J Reddy has shown that an effective
approximation to X" by polynomials of degree k (k < 11) is possible if and
only if k>~ (This result is implicit in Theorem II of[17J). In [2lJ we
have observed that if kin --> ° as 11 -->Xi, then it is not possible to
approximate x" on [0, I J by reciprocals of polynomials of degree k with an
error ~ e" (0 < e < I). In [21 J we have also extended several of the above
stated results to the case of several variables, as well as to the case of the
union of two disjoint intervals. In [13 J Newman and Reddy have studied
the problem of approximating X" on [0, I J by polynomials and rational
functions having only non-negative real coefficients. In this paper we have
shown that the least maximal error obtained in approximating X" on [0, I J
by polynomials of degree k( I ~ k < 11) having non-negative real coefficients
is equal to the least maximal error obtained by rational functions of the
corresponding degree having non-negative real coefficients. In fact, we have
established that the best approximating rational function of degree k
( I ~ k < n) to X" on [0, I J having non-negative real coefficients is nothing
but the best approximating polynomial of degree k having non-negative
real coefficients. In [20J we have obtained error estimates in
approximating x" on [-1, 1J by rational functions of the form
(P II 2(X)/Q2JX)). From these results we get, for the case s = 0, the above
stated result of Chebyshev. Further, our results improve Newman's, giving
sharper estimates. Also we have shown there, that X" can be approximated
uniformly on [0,4 J by rational functions of the form (PII 2(X)/Q2(X)) with
an error ~ 6/11.

Now we turn our attention to the approximation of Ixl on [ - L 1]. As
we know, the approximation of Ixl on [-I, I J by polynomials played a
very significant role in the early development of approximation theory. In
1908, de la Vallee Poussin raised the question of best approximating Ixl on
[ -I, I J by polynomials. This problem attracted the attention of several
leading mathematicians of that period. Preliminary results were obtained
by Lebesgue, de la Vallee--Poussin, Bernstein, and Jackson. In 1911
Bernstein [2J has shown that Ixl can be approximated on [-I, I J by
polynomials of degree 2n with an error ~ (2n + I) 1 but not better than
[4(211-1)(J2+I)J I. Finally, in 1913, Bernstein ([5J,p.288)hasshown
that the least largest error obtained in approximating Ixl on [ -I, I J by
polynomials of degree 2n is asymptotic to 0.282/2n. In 1964, on a
suggestion of Shapiro, Newman [I°J has obtained error estimates in
approximating Ixl on [-I, I J by rational functions of the form xP/Q,
where P and Q are polynomials of degree at most n. In fact, he has shown
that Ixl can be approximated on l-l, 1J by rational functions of the
above form with an error ~ 3e y/" for all n ~ 4, but not better than
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~ e 9y '7,. Later on several H ungarian (Tur~m and his associates) and Soviet
Mathematicians (Goncar and his associates) have obtained generalizations
and improvements of the above stated result of Newman. Finaliy,
Bulanov [5] has established that Ixl can be approximated on [ --1, 1] by
rational functions of degree n with an error e rry

;" but not much better.
In [3] Boehm has shown that Ixl can be approximated by reciprocals of

polynomials of degree n with an error < (1 + rr) n 1,3. In [9] Lungu,
working under the supervision of Goncar, has shown that Ixl can be
approximated on [ -1, 1] by reciprocals of polynomials of degree n with
an error <n- 1 logn but not better than (l6n) I, In [14] Newman and
Reddy have shown that Ixl can be approximated on [-1, 1] by such
reciprocals with an error < rr 2/2n. In [18] we have initiated the
approximation of J 1 - x on [0, 1].

Chehyshev.

minllx"-P" ICxllll,r1.IJ=2

Zolotarev. For O<a<n tan 2 (rr/2n),

n+! (1 )

Achieser ([1, p.279]). Let ao#O, ai' ([2"'" ([II be given real numbers.
Then for every N> n :? 0,

II ( N 1 N-2+ + )1 1
'

1_ qoX +qlx ... qN I =_/'_,0_

Pox"+"'+P
I

2N I'

where )'0 is a zero of minimal absolute value of the polynomial

(3 )

c
°o

-), 0

o -Ie

Newman ([11, p.285]). There is a polynomial P(x) of degree at most
n - 1 and a polynomial q(x) of degree 2s such that

Il
xlI- P(x) II. <2 11+1 (s+n-3) I

q(x) Ld 1,1J s
(4)
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Let P(x) be any polynomial of degree at most n - I and q(x) any
polynomial of degree ~ 2s, then

Il

tll_P(X) II >2 2-n(s+n
s
+l) I

~ q(x) L,[ 1.1]/'
(5)

(6)

Reddy [20]. Given n~s+2~4, there exist polynomials P(x) and q(x)
of degrees n - 2 and 2s, respectively, for which

'Ii x" - P(x) II ~ I f 3 5 r
I q(x) L,,[ Lli 2" J\+~ -) + ("';-'-; )

Remark. (6) sharpens (4).

Reddy ([ 17, Theorems II and 18]).

(i) Let P21l 2(X) and q21l 2(X)=L:;':02b;x', b;~O (i~0), be any
even polynomials of degrees at most (2n - 2). Then

1 1

211_ P21l 2(X) II >2 2,,+1x I/"

Q21l 2(X)i/,r 1.11
(7)

(8)

(ii) Let P(x) and q(x) be any polynomials of degrees at most m ~ I.
Then, if m < 2n,

II X 211 - P(x) II ~ 2 Ie 2"(2m,,I".

, q(x) ! L, [ I. I]

Newman and Reddy ([ 13, p. 248]). If Pk(x) = dxk, I ~ k < n, d> 0, and

n(1 - d) = (n -k) (~Y/in ok) dn/!Il k), (9)

then Pk(x) is the best uniform approximating polynomial of degree k to x"
on [0, I]. In fact, denoting by Gk and f)k respectively, the smallest maximal
error in approximating x" on [0, 1] by polynomials and rational functions
having only real non-negative coefficients, we have

Newman and Reddy ([15, p.452]). (i) For all n~4

i!Xn _(2I,-1 (n+i-l) (I-X)') III "S 16n2mr. (12)
II ;~ 0 I , l.x,[O.I]



APPROXIMATIONS TO Xli AND Ixl-A SURVEY 131

(ii) Let P(x) be any polynomial of degree at most m. Then for all
m~I,n~l,

Il
lxn--1 II ~2 lI-1(3+2}2)m.
, P(x) L x [O,11

(13 )

(iii) Let P(x) and q(x) be any real polynomials of degrees at most I

(O~l~n-I) and m (m~O), respectively. Then (a) for l=n-I,

II II P(x) II m! (2n)!
IX - q(x) L,ro,11~(m+2n-l)!22n(m+nl" (14)

(b) For even m,

II

P(x) II (m+n-l-l)!(21+2)!2 2n -2

x
n

,_ q(x) I L, [0,1] ~ (m + n + l)!('2/221~Y) (m - 2n)' (15)

Newman ([12, p.236]). For O~x~ 1,

1 2 ( 2n - 2)n I0<--- x"<_ -
"o(x) . "k 2n+k

where o(x) = L7~0 (n+; 1)( 1~ xr
Reddy [21].

(16 )

(i) {
2m (n + i-I) }-I (n + 2m) (n + m) - 2O~ L ' (I-x)' _xn~

,_0 I 2m m
(17)

(ii) Let P(x) be any real polynomial of degree at most m. Then for
any constant a (0 < a < I) we have

II I II anx n
- -.- ~ I + a •

I P(x) Lx[O,11 2TmCr~ (18 )

Remark. If min -+ 0 as n -+ 00, then it is impossible to approximate x n

on [0, 1] by reciprocals of polynomials of degree m with a maximal error
~ en (0 < e < I). For set m = no,,, on -+ 0 as n -+ 00 and choose for each n,

a = 1 - (5". Then

T (I+a)=T (2-0 ll )<T (~)<4mO-m (19)m 1 _ a m bn m bn " n'
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Therefore
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II

1 II lin
X

II
_--", ~(I-(511)[H

P( X) i, L, [0 I 1 -
(20)

which ---> I as n ---> Q.

Hence geometric convergence fails.

Newman and Riulin ([ 16, p. 454]).

Pk. Ii <- E (' k) <--4 " II x "Pk,ne

where 0:( n < k,

pk,lI=2 k11 L (k),EI1(xk)=minllxk-fa,x'li
2; > f1 -+ k .I (l" f =- () I I. j r

Red(~v ([17, p. 101]), For any real constant (J,

1,1]

(21 )

(22)

Borwein ([4, p. 241 ] ).
Let n ~ I, m ~ I. For some real polynomial PfI/(x) of degree :( m,

__I_II <- (4.72)n (n+m)! (3n-2)!

Pmex) i L, [0 I 1 " J2n - I (11 - I )! (311 + m - I )!'

while for every such polynomial qm(X)'

Ii 0.18 (11 + m )! (311)!

- qm(x)III,[O,I]~ ~-(I1-I)!(311+m+I)!'

Also

{
II

(
II ) III }I/IIlim min Xli - L a;x; = ~

n- ajfcal j=O LI[O,t-l

Reddy [21]. Let k ~ 1. Then x7' x~? x~) ... xZk can be approximated in
the k-dimensional unit cube by a polynomial P in the variables
X\'X2"',X, with the corresponding degrees at most 11 1,n2"'"11" respec-
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tively, and the total degree of the polynomial not exceeding
11 1 +11 2+ ... +l1k -2 with a maximal error 2 N+k. In otherwords

max Ix,!' xS2
••• X~k - P(x I' x 2,···, xk)1 = 2

1:( xI oS; Li= 1,2, .J

where N =:2::; 1 l1 i ·

N + k (23)

Remark. The above result has been extended to the case where each xi

ranges over the union of [ - hi' -aJ and Cal' hi]' J= 1,2,..., k.

Reddy [21]. Let 0 ~ a < h. Then there exists a real rational function of
the form P(x)/Q(x), where P(x) is a polynomial of degree at most 211- 2
and Q(x) is of degree 2.1', for which we have in the union of [ -h,-a], and
[a, h].

(24)

where

A. = [,'" "!T2] (_1)1 (m-J-I-I )(m-J-I-n) (2h
J

2 +2
7

a)'" / " 2/,

/ I 11 - I 1 h- - (r
I~O

m = 211 + 2.1'.

Let P(X) and q(x) be any polynomials of degrees at most (2n - 1) and 2s
respectively. Then we have in the union of the intervals [-h, -a], [a, h].

I 2" P(x) II (h 2-(/)"s!(211)!(s+l1) I

!IX - q(x) iL, > [T,((h 2+a2)/(h2_a2))] 22"(s+2n-1 )!'
(25)

Reddy [21]. There is a monotonic polynomial P*(x) of degree at most
(211 - 2k - I) (0 ~ k ~ 11 - I) for which we have in the union of [-h, -a]
and [a, h],

"
Ilx2"+I-P*(x)IIL,~(3h-2a)(211+1) I IA",I (26)

In = n k

where

=(h
2
_a

2
)" [hI2J (I1-h+2i)( 11 )(2h

2
+2a

2 )h 2i
A" h 22"--1 I . 1+2' h2 2

i~O I 11-1 I -a

Now we turn to the case of Ixl.
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Bernstein [2]. There exists a polynomial P*(x) of degree at most 2n,
for which

I
Illxl-P*(x)llld 1,11~2n+I' (27)

He also established that for every real polynomial P(x) of degree at most
2n,

Illxl-P(x)liJ,r I,I]?: M'
4(2n-I)(y'2+ I)

(28)

Newman ([ 10, p. II J). For every n ?: 4, there is a real rational function
r(x) of degree n + I, for which

Ill x l- r (x)III,1 1I1~3e (29)

On the other hand, he has shown that for every real rational function r(x)
of degree at most n,

(30)

Goncar has derived Newman's result in a much sharper form from an
earlier result of Zolotarev. It is interesting to note that, Zolotarev's work
was published in 1877, also prior to Weierstrauss's approximation theorem.

ConcaI' ([8, p. 447J).

(( n/2) f: (31 )

Bulanov ([5J, p.276).

More precisely, for n = 0, 1,2,... , and any M > 0

where Ll(n)=O(n).

E".,,(lxl)?:e
n(ff t I )L~),

IT ....../n( 1 L~(n))

(32)

(33 )
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Vjaceslavov ([ 24, p. 680]).

En n( Ixl) ~ Ane- n"v"'.

Where A is an absolute constant.

Boehm ([3, p. 396]).
There is a real polynomial P*(x) of degree n for which

II
1 II 1+ 7[Ixl--*- ~-li-1.

, P (x) 1,( I. I] n'

Lungu ([9, p.810J).
There is a real polynomial P*(x) of degree n for which

Ii 1 II:\ Ix[ --*- ~ (logn/n).
I P (X)L,[ 1.1]

Lungu ([9, p.810J).
For every real polynomial P(x) of degree at most n,

I: I 'I I,·lxl--1 ~-.
:1 P(x) 1,11.11 16n

Newman and Reddy ([14, p.232]).
There exists a polynomial P*(x) of degree at most n, for which

'I 1 Ii 7[2Ixl---, ~-.
I p*(x)L,[ 1.1] 2n

Erdos, Newman, and Reddy ([6, p. 137J).
There exists a polynomial P*(x) of degree n, for which

1 II 4--*- ~2'
P(x) L,10.1] n

135

(34)

(35)

(36 )

(37)

(38 )

(39 )

Reddy [21]. Let k be any integer ~ 1. Then for each real polynomial
P(x I' X2' X 3"'" Xk) of degree 2n 1, 2n 2 , ... , 2n k , respectively, in the variables
XI' X 2 , ... , Xb we have for some constant c, depending only on k,

(40)

Here II' II IS the uniform norm over the cube [--1, 1J x
[-I,IJx·"[-l,l].



136

Reddy [19].
Let 511(X)=L;'~O(~')W'. Then

A. R. REDDY

j- 5 11 (1) II' J
v I-x~ (1 +5

11
(1)) SII(X) l,rO 1]:( 1+5,,(1)'

Let R(x) = PIx )/Q(x), where P(x) = L;'~ 0 a,x', ao > 0, a,~ 0 for 1 :( i:( n,
and Q(X)=L;I~oh,x', ho>O and O:(h,:(ho (~')4 'for 1:(i:(n. Then

Recently Ferguson and Szabados [25] have shown that, if Ixl is
uniformly approximated on [-1, 1] by rational functions with integral
coefficients with an error I:, 0 < I: < L then at least one of the coefficients in
greater than (251:) 12 in absolute value. By adopting a slightly different
approach, Reddy has replaced (25£) \ by (7<;) I
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